Information School Capital University of Economics and Business, China
Abstract:Most adversarial threats in artificial intelligence target the computational behavior of models rather than the humans who rely on them. Yet modern AI systems increasingly operate within human decision loops, where users interpret and act on model recommendations. Large Language Models generate fluent natural-language explanations that shape how users perceive and trust AI outputs, revealing a new attack surface at the cognitive layer: the communication channel between AI and its users. We introduce adversarial explanation attacks (AEAs), where an attacker manipulates the framing of LLM-generated explanations to modulate human trust in incorrect outputs. We formalize this behavioral threat through the trust miscalibration gap, a metric that captures the difference in human trust between correct and incorrect outputs under adversarial explanations. By incorporating this gap, AEAs explore the daunting threats in which persuasive explanations reinforce users' trust in incorrect predictions. To characterize this threat, we conducted a controlled experiment (n = 205), systematically varying four dimensions of explanation framing: reasoning mode, evidence type, communication style, and presentation format. Our findings show that users report nearly identical trust for adversarial and benign explanations, with adversarial explanations preserving the vast majority of benign trust despite being incorrect. The most vulnerable cases arise when AEAs closely resemble expert communication, combining authoritative evidence, neutral tone, and domain-appropriate reasoning. Vulnerability is highest on hard tasks, in fact-driven domains, and among participants who are less formally educated, younger, or highly trusting of AI. This is the first systematic security study that treats explanations as an adversarial cognitive channel and quantifies their impact on human trust in AI-assisted decision making.
Abstract:Autoregressive and diffusion models represent two complementary generative paradigms. Autoregressive models excel at sequential planning and constraint composition, yet struggle with tasks that require explicit spatial or physical grounding. Diffusion models, in contrast, capture rich spatial structure through high-dimensional generation, but lack the stepwise logical control needed to satisfy complex, multi-stage constraints or to reliably identify and correct errors. We introduce Collaborative Thoughts, a unified collaborative framework that enables autoregressive and diffusion models to reason and generate jointly through a closed-loop interaction. In Collaborative Thoughts, autoregressive models perform structured planning and constraint management, diffusion models instantiate these constraints as intermediate visual thoughts, and a vision-based critic module evaluates whether the visual thoughts satisfy the intended structural and physical requirements. This feedback is then used to iteratively refine subsequent planning and generation steps, mitigating error propagation across modalities. Importantly, Collaborative Thoughts uses the same collaborative loop regardless of whether the task is autoregressive question answering or diffusion-based visual generation. Through representative examples, we illustrate how Collaborative Thoughts can improve the reliability of spatial reasoning and the controllability of generation.
Abstract:While statement autoformalization has advanced rapidly, full-theorem autoformalization remains largely unexplored. Existing iterative refinement methods in statement autoformalization typicall improve isolated aspects of formalization, such as syntactic correctness, but struggle to jointly optimizing multiple quality dimensions, which is critical for full-theorem autoformalization. We introduce a reference-free iterative monotonic process for full-theorem autoformalization that leverages complementary feedback from theorem provers and LLM-based judges, without access to ground-truth proofs or existing formalizations at inference time. Our approach optimizes a masked composite objective over Formal Validity, Logical Preservation, Mathematical Consistency, and Formal Quality, guided by a responsiveness map that indicates how different LLMs acting as different roles preferentially improve each dimension. We further propose an acceptance policy that guarantees certified monotonic improvement, and provide conditions ensuring convergence and termination. Empirical experiments demonstrate the proposed process enables simultaneous improvement across multiple dimensions, achieving 93.44% formal validity and a 78.22% overall score on miniF2F, and 44.09% formal validity and a 29.79% overall score on ProofNet.
Abstract:Large language models (LLMs) are increasingly deployed over knowledge bases for efficient knowledge retrieval and question answering. However, LLMs can inadvertently answer beyond a user's permission scope, leaking sensitive content, thus making it difficult to deploy knowledge-base QA under fine-grained access control requirements. In this work, we identify a geometric regularity in intermediate activations: for the same query, representations induced by different permission scopes cluster distinctly and are readily separable. Building on this separability, we propose Activation-space Anchored Access Control (AAAC), a training-free framework for multi-class permission control. AAAC constructs an anchor bank, with one permission anchor per class, from a small offline sample set and requires no fine-tuning. At inference time, a multi-anchor steering mechanism redirects each query's activations toward the anchor-defined authorized region associated with the current user, thereby suppressing over-privileged generations by design. Finally, extensive experiments across three LLM families demonstrate that AAAC reduces permission violation rates by up to 86.5% and prompt-based attack success rates by 90.7%, while improving response usability with minor inference overhead compared to baselines.
Abstract:LiDAR-based 3D object detection is widely used in safety-critical systems. However, these systems remain vulnerable to backdoor attacks that embed hidden malicious behaviors during training. A key limitation of existing backdoor attacks is their lack of physical realizability, primarily due to the digital-to-physical domain gap. Digital triggers often fail in real-world settings because they overlook material-dependent LiDAR reflection properties. On the other hand, physically constructed triggers are often unoptimized, leading to low effectiveness or easy detectability.This paper introduces Material-Oriented Backdoor Attack (MOBA), a novel framework that bridges the digital-physical gap by explicitly modeling the material properties of real-world triggers. MOBA tackles two key challenges in physical backdoor design: 1) robustness of the trigger material under diverse environmental conditions, 2) alignment between the physical trigger's behavior and its digital simulation. First, we propose a systematic approach to selecting robust trigger materials, identifying titanium dioxide (TiO_2) for its high diffuse reflectivity and environmental resilience. Second, to ensure the digital trigger accurately mimics the physical behavior of the material-based trigger, we develop a novel simulation pipeline that features: (1) an angle-independent approximation of the Oren-Nayar BRDF model to generate realistic LiDAR intensities, and (2) a distance-aware scaling mechanism to maintain spatial consistency across varying depths. We conduct extensive experiments on state-of-the-art LiDAR-based and Camera-LiDAR fusion models, showing that MOBA achieves a 93.50% attack success rate, outperforming prior methods by over 41%. Our work reveals a new class of physically realizable threats and underscores the urgent need for defenses that account for material-level properties in real-world environments.
Abstract:Instruction tuning plays a critical role in enhancing the performance and efficiency of Large Language Models (LLMs). Its success depends not only on the quality of the instruction data but also on the inherent capabilities of the LLM itself. Some studies suggest that even a small amount of high-quality data can achieve instruction fine-tuning results that are on par with, or even exceed, those from using a full-scale dataset. However, rather than focusing solely on calculating data quality scores to evaluate instruction data, there is a growing need to select high-quality data that maximally enhances the performance of instruction tuning for a given LLM. In this paper, we propose the Model Instruction Weakness Value (MIWV) as a novel metric to quantify the importance of instruction data in enhancing model's capabilities. The MIWV metric is derived from the discrepancies in the model's responses when using In-Context Learning (ICL), helping identify the most beneficial data for enhancing instruction tuning performance. Our experimental results demonstrate that selecting only the top 1\% of data based on MIWV can outperform training on the full dataset. Furthermore, this approach extends beyond existing research that focuses on data quality scoring for data selection, offering strong empirical evidence supporting the effectiveness of our proposed method.
Abstract:Retrieval-augmented generation (RAG) enhances factual grounding by integrating retrieval mechanisms with generative models but introduces new attack surfaces, particularly through backdoor attacks. While prior research has largely focused on disinformation threats, fairness vulnerabilities remain underexplored. Unlike conventional backdoors that rely on direct trigger-to-target mappings, fairness-driven attacks exploit the interaction between retrieval and generation models, manipulating semantic relationships between target groups and social biases to establish a persistent and covert influence on content generation. This paper introduces BiasRAG, a systematic framework that exposes fairness vulnerabilities in RAG through a two-phase backdoor attack. During the pre-training phase, the query encoder is compromised to align the target group with the intended social bias, ensuring long-term persistence. In the post-deployment phase, adversarial documents are injected into knowledge bases to reinforce the backdoor, subtly influencing retrieved content while remaining undetectable under standard fairness evaluations. Together, BiasRAG ensures precise target alignment over sensitive attributes, stealthy execution, and resilience. Empirical evaluations demonstrate that BiasRAG achieves high attack success rates while preserving contextual relevance and utility, establishing a persistent and evolving threat to fairness in RAG.




Abstract:Retrieval-Augmented Generation (RAG) enhances large language models (LLMs) by retrieving relevant documents from external sources to improve factual accuracy and verifiability. However, this reliance introduces new attack surfaces within the retrieval pipeline, beyond the LLM itself. While prior RAG attacks have exposed such vulnerabilities, they largely rely on manipulating user queries, which is often infeasible in practice due to fixed or protected user inputs. This narrow focus overlooks a more realistic and stealthy vector: instructional prompts, which are widely reused, publicly shared, and rarely audited. Their implicit trust makes them a compelling target for adversaries to manipulate RAG behavior covertly. We introduce a novel attack for Adversarial Instructional Prompt (AIP) that exploits adversarial instructional prompts to manipulate RAG outputs by subtly altering retrieval behavior. By shifting the attack surface to the instructional prompts, AIP reveals how trusted yet seemingly benign interface components can be weaponized to degrade system integrity. The attack is crafted to achieve three goals: (1) naturalness, to evade user detection; (2) utility, to encourage use of prompts; and (3) robustness, to remain effective across diverse query variations. We propose a diverse query generation strategy that simulates realistic linguistic variation in user queries, enabling the discovery of prompts that generalize across paraphrases and rephrasings. Building on this, a genetic algorithm-based joint optimization is developed to evolve adversarial prompts by balancing attack success, clean-task utility, and stealthiness. Experimental results show that AIP achieves up to 95.23% ASR while preserving benign functionality. These findings uncover a critical and previously overlooked vulnerability in RAG systems, emphasizing the need to reassess the shared instructional prompts.
Abstract:Large visual-language models (LVLMs) integrate aligned large language models (LLMs) with visual modules to process multimodal inputs. However, the safety mechanisms developed for text-based LLMs do not naturally extend to visual modalities, leaving LVLMs vulnerable to harmful image inputs. To address this cross-modal safety gap, we introduce security tensors - trainable input vectors applied during inference through either the textual or visual modality. These tensors transfer textual safety alignment to visual processing without modifying the model's parameters. They are optimized using a curated dataset containing (i) malicious image-text pairs requiring rejection, (ii) contrastive benign pairs with text structurally similar to malicious queries, with the purpose of being contrastive examples to guide visual reliance, and (iii) general benign samples preserving model functionality. Experimental results demonstrate that both textual and visual security tensors significantly enhance LVLMs' ability to reject diverse harmful visual inputs while maintaining near-identical performance on benign tasks. Further internal analysis towards hidden-layer representations reveals that security tensors successfully activate the language module's textual "safety layers" in visual inputs, thereby effectively extending text-based safety to the visual modality.
Abstract:Autoformalization plays a crucial role in formal mathematical reasoning by enabling the automatic translation of natural language statements into formal languages. While recent advances using large language models (LLMs) have shown promising results, methods for automatically evaluating autoformalization remain underexplored. As one moves to more complex domains (e.g., advanced mathematics), human evaluation requires significant time and domain expertise, especially as the complexity of the underlying statements and background knowledge increases. LLM-as-a-judge presents a promising approach for automating such evaluation. However, existing methods typically employ coarse-grained and generic evaluation criteria, which limit their effectiveness for advanced formal mathematical reasoning, where quality hinges on nuanced, multi-granular dimensions. In this work, we take a step toward addressing this gap by introducing a systematic, automatic method to evaluate autoformalization tasks. The proposed method is based on an epistemically and formally grounded ensemble (EFG) of LLM judges, defined on criteria encompassing logical preservation (LP), mathematical consistency (MC), formal validity (FV), and formal quality (FQ), resulting in a transparent assessment that accounts for different contributing factors. We validate the proposed framework to serve as a proxy for autoformalization assessment within the domain of formal mathematics. Overall, our experiments demonstrate that the EFG ensemble of LLM judges is a suitable emerging proxy for evaluation, more strongly correlating with human assessments than a coarse-grained model, especially when assessing formal qualities. These findings suggest that LLM-as-judges, especially when guided by a well-defined set of atomic properties, could offer a scalable, interpretable, and reliable support for evaluating formal mathematical reasoning.